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The stochastic heating threshold for a classical model is derived by its quantized version. The model
is taken from plasma physics being a particle in a constant magnetic field, which is supposed to be weak,
under the effect of a sinusoidal wave. We get large fluctuations in momentum if a criterion we derive is
satisfied, showing a wide indeterminacy at quantum level when compared with the initial state. It is as-
sumed that the cyclotron frequency and the wave frequency must have an irrational ratio and that the
quantum Larmor radius for the ground state is much larger than the inverse of the wave number.

PACS number(s): 03.65.Nk, 05.40.+j

A deep question one has to face when dealing with
quantum mechanics is the understanding of the mecha-
nism, at a quantum level, of the classical chaoticity of a
large class of nonlinear Hamiltonian systems. It is a
well-known fact that the diffusional behavior of the clas-
sical model cannot be found at the quantum level, as
could be seen for the quantum kicked rotor [1,2]. Due to
the great difficulties one encounters treating with such
kind of problems, some authors even suggest to modify
the Schrdodinger equation [2]. Then, it becomes of
paramount importance to find some simple models that,
in some approximation, could give an explanation of the
classical behavior by standard quantum mechanics.

In this paper, consistent with the above philosophy, we
show how to explain stochastic heating by discussing the
widely studied model, at least at a classical level, of a har-
monic oscillator; that is, a particle in a constant magnetic
field taken to be weak, under the effect of a sinusoidal
wave propagating orthogonally to the field. This model is
interesting because, classically, it gives rise to stochastic
heating when a certain threshold of the wave-field inten-
sity is overcome, both for small or large magnetic fields
[3]. Our study consists of the analysis of the quantum
behavior of such a model that, under certain conditions,
permits the derivation of the classical stochastic heating
threshold.

In order to fix the limitations in our description and to
have the notation defined, we write down the Hamiltoni-
an of the model as [4]

H=(a%a+ 1w, +qé¢cos[Bla™ +a)—wt] (1)

a and a * being the ladder operators, o, the cyclotron fre-
quency, g the charge of the particle, ¢ the potential, and
B=(#k?/2mw,)'*=kx,, with k the wave number. This
is the quantized version of the model discussed in Ref.
[3]. As pointed out in Refs. [4], our results hold with the
condition that 8>>1, similar to the classical condition on
the Larmor radius. In addition, we assume that the ratio
between the cyclotron frequency and the wave frequency
must be an irrational number, typical of the
Kolmogorov-Arnold-Maser theorem [1,3].

As shown with the method used in Refs. [4], the wave
function for our model can be written as
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+ o
lp() = 3 J,(2)e "inB) ()
n=-—oo
where z =q¢ /#w, J, is the nth Bessel function, and linB)
a coherent state having inf3 as a complex parameter.
Equation (2) is defined as a phase factor due to the
ground state energy [4].

Equation (2) holds, given the above limitations, with
the initial condition that in the far past it coincides with
the ground state of the harmonic oscillator. With Eq. (2)
we can immediately compute the mean values of the posi-
tion and momentum, and their higher powers. For the
position x =x(a *+a), in the limit 8>> 1, we obtain

(x)=ixoB S (n __n,l')Jm(z)Jn(Z)ei(m—n)a)te*(m~n)2(l32/2)
m,n
m¥*n
=0, (3)
(x)=x2+x33 [1—(m —n)B*),,(2)],(2)
moin
Xei(m —n)wte*(m*n)z(Bz/Z)
~x} 4)

(x)=ix3 3 [(m —n)PB—3(m —n)B,,(2)],(2)
mn

Xei(m—n)mte-(m—n)2</32/2)
~0 (5)
(xH)=3x¢{+x§ S ((m —n)*B*+3[1—2(m —n)*B*1}
men
XJ (z)J (z)ei(m—n)wte*(m‘n)2(32/2)
m n
~3x§ . (6)

We easily realize that we have the early expectation
values for the position and its powers as computed by the
ground state wave function of the harmonic oscillator.
The particle approximately keeps its localization on the
basis of this result. Things can change radically for the
momentum, p =ipy(a * —a), where po=(m#iwy/2)"/?. In
fact, a calculation similar to the one above for the
momentum gives
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(p)=pBS (m +n)Jm(Z)Jn(z)ei(m—n)wte—(m—n)z(BZ/Z)
mon
~0, )
(P =p2(1+2B22)+p3d S, [1+(m +nlB,, (2)],(2)e! ™ ~mote ~tm —m* (B /2
mon
~pl(1+2p%?) , ®)
(P =p3 3 [(m +nPB+3(m +n)BW,, (2)],(2)e!m ~Mwie =(m =W E /)
men
=0, 9
(p*)=p&(3+6B*z*+8B22+1282%)+p¢ 3, {(m +n)*B*+3[1+2(m +n)B21}J,, (2)], (2)e (™ ~mwte ~(m —n1E/2)
o
m#n

~p(3+6B*z*+8B%2+12p%27) .

We easily realize that now the probability distribution for
the momentum is quite different from the initial Gauss-
ian, depending on the critical parameter B|z|. The in-
determinacy for the momentum can become very large,
in this way increasing the number of cells of phase space
accessible to the particle that can become strongly delo-
calized in the momentum, while keeping its space locali-
zation. In order for this to happen, we have to require
that Ap /po~V2B|z| >>1. This takes us directly to

2
2lez|=—lm >1, (11)

mowy

(10)

making our result independent of #. This is just the cri-
terion for stochastic heating in the case of a weak mag-
netic field [3], generally derived with the Chirikov over-
lap criterion [1,3].

In conclusion, we have seen that the method and mod-
el of Ref. [4] give a possible quantum explanation of clas-
sical stochastic heating. We remark simply that the ex-
planation of classical chaos by standard quantum
mechanics could come from the development of good
methods and concepts and not from modifying the theory
itself.
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